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Section 1 provides additional information about dataset, including
detailed description of distortions and visual examples of prob-
lematic areas. Section 2 consists of images used for compression
application and more results of watermark application. Finally, in
Section 3 we provide all metrics’ coefficients which are results of
training with k-fold cross validation procedure.

1 DATASET
The dataset consists of 557 low dynamic range (LDR) images with
170 unique scenes. Many of them are generated for up to 3 distortion
levels. The scenes were selected to cover many common and special-
ized computer graphic artifacts such as noise, image compression,
shadow acne etc. This variety makes our data challenging for the
state-of-the-art image quality metrics. During the selection process
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that aimed to generate a large database collecting images from dif-
ferent sources, we gathered scenes with multiple artifact types in a
specific category named mixed (Section 1.1). In this way we avoided
ambiguities in all the other set or possible hiding effects by one
artifact over another one. To make data more clear, we organized
the images into the subsets that are summarized in Table 1. At the
end of this section, we present all the images from the dataset except
TID2013 subset due to big volume and lack of locality in images. Full
datatset will is available at: https://doi.org/10.17863/CAM.21484/.

1.1 Mixed
This set consists of 59 images that come from LOCCG data set [Čadík
et al. 2012] and contain more than one distortion type. The distor-
tions include high-frequency and low-frequency noise, structured
noise, virtual point lights (VPL) artifacts, clamping, downsampling,
blurring and light leaking artifacts. One example of those artifacts
is presented in Figure 1.
High frequency noise is the common artifact in many global

illumination methods e.g. ray tracing, path tracing, radiosity etc. It is
caused by low number of samples and appears usually in shadowed
areas. Some types of materials cause high-frequency noise more
often than the others. We can see it when scene consists of high-
glossy surfaces, curved transparent objects that scatter the light, or
translucent surfaces that need a lot of light samples to be rendered
properly.

Structured noise is a distortion that results from correlated pixel
errors. Both noise and bias are showed. Instant radiosity [Keller
1997], photon mapping [Jensen 2001] and radiance caching algo-
rithm [Ward et al. 1988] [Krivánek et al. 2005] can exhibit interpola-
tion and caching artifacts.

VPL is one of many global illumination methods. In the first pass
rays are cast from the light source. In the intersection point between
ray and geometry a new virtual point lights are generated. Therefore
the scene is rendered multiple times for every light generated in the
first pass. Because the virtual lights are on the surfaces, the intensity
of the light in their 3D surroundings is higher. This causes local
brightness changes and low-frequency noise, that spoil the overall
look of the image. Due to its high computational complexity, this
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Subset name Scenes Images Distortion levels levels generation method Resolution [px] Source
Mixed 20 59 2-3 blending 800×600 custom software, real photos
Perception patterns 12 34 1,3 blending 800×800 matlab
Aliasing 14 22 1-3 varying sample number 800×600 Unity, CryEngine
Peter panning 10 10 1 n/a 800×600 Unity, CryEngine
Shadow map downsampling 9 27 3 varying shadow map resolution 800×600 Custom OpenGL app
Shadow acne 9 9 1 n/a 800×600 Unity, CryEngine
Z fighting 10 10 1 n/a 800×600 Unity, CryEngine
Compression 25 71 2-3 varying bit-rates 512×512 real photos
Deghosting 12 12 1 n/a 900×900 real photos
IBR 18 36 1,3 varying distance between key frames 960×720 custom software
CGIBR 6 6 1 n/a 960×720 custom software
TID2013 25 261 n/a n/a 512×384 real photos

Table 1. Dataset details.

method is not used in real time computer graphics but in production
renderings (movies, animations, architectural visualizations).

Light leaking is one of the photon mapping artifact and appears
like an area clearly brighter than normal. It depends on illumination
of particular geometries in the scene, like corners in a room or
related to specific attributes of a material like smoothness, showing
reflected light even if the object is closed off by other geometries.
These last two techniques (VPL and photon mapping) are clas-

sified as approximate global illumination algorithms. Locally they
inject errors, sometimes deliberately to camouflage more evident ar-
tifacts. Artifacts like VPL clamping in instant radiosity, light leaking
in photon mapping and irradiance caching belong to this set.

Full sized image Distorted sample Reference sample

Fig. 1. Example of high frequency noise, common artifact in VPL method.

1.2 Perception patterns
Contrast-Luminance-Frequency-Masking (CLFM) dataset consists
of 34 images from [Čadík et al. 2013] that are artificial patterns
designed to expose well known perceptual phenomena, such as lu-
minance masking, contrast masking and contrast sensitivity. The im-
ages are generated in the luminance domain (linear) and converted
to gray scale images (luma) using the sRGB color space. Differently
from other sets in our collection this one includes abstract patterns
like blobs or stripes with different contrast values. For those scenes
we prepared three distortion levels by blending linearly reference
and distorted image. One of the scenes is shown in Figure 2.

Full sized image Distorted sample Reference sample

Fig. 2. Example of perception patterns dataset.

1.3 Aliasing
Generally aliasing is a phenomenon which happens when sampling
frequency of a signal is too low to reproduce high frequency details
accordingly to the Nyquist criterion. In the image domain, alias-
ing appears as an effect that include jagged profiles, improperly
rendered details, and stair step artifacts on the edges. All these
images are rendered starting from 3D scenes of interior rooms or
outdoor environments. In this category we created from one up to
three distortion levels and for this purpose we used different sample
numbers for multi-sampling anti-aliasing method. Images source:
[Piórkowski et al. 2017]. Figure 3 shows an example of aliasing
artifact.

Full sized image Distorted sample Reference sample

Fig. 3. Example of aliasing artifact.

1.4 Shadow acne
Shadow acne is an effect caused by the discrete nature and limited
resolution of the shadow map. During depth map generation the
angle between surface and ray of light has to be taken into account.
Tilted depth texel can cross the surface having a part above and a
part below it. The resulting effect is a striped Moire pattern. This
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supra-threshold type of artifact is commonly seen in computer
games and can be the reason of unnatural looking image. Images
come from [Piórkowski et al. 2017]. An example of this kind of
artifact is presented in Figure 4.

Full sized image Distorted sample Reference sample

Fig. 4. Example of Moire pattern known as shadow acne artifact.

1.5 Peter panning
This artifact appears clearly as supra-threshold distortion and is
related to objects with missing shadows or part of it, which look
like detached from the surface, conveying the illusion of floating
above the surface. Peter Panning arises from a correction of another
problem. Since adding a depth offset is a technique for removing
shadow acne (Section 1.4), this increment is related to pixel position
in light space. Peter Panning results results from too large depth
offset which causes errors in the depth test. Like shadow acne, peter
panning is aggravated when there is insufficient precision in the
depth buffer. Calculating tight near planes and far planes also helps
avoid peter panning. Figure 5 shows an example of peter panning
artifact.

Full sized image Distorted sample Reference sample

Fig. 5. Example of peter panning artifact - typical ’detached’ shadows.

1.6 Shadow map downsampling
Downsampling of an image is the process of information reduction.
Using lower resolution of shadow maps results in a loss of shadows
accuracy but improves the computational performance. Game ren-
dering benefits a lot from this technique. In order to maintain a fast
refresh rate during game rendering, it is common practice to use
the possibly smallest shadow maps. If the map used for generating
shadows is too small, it appears on the screen as the jagginess of
shadows’ edges. This is kind of a supra-threshold artifact, but since
it is localized only on the shadows’ edges it is quite difficult to no-
tice, especially without any reference image. An example of artifact
caused by too low shadow map resolution is shown in Figure 6.

Full sized image Distorted sample Reference sample

Fig. 6. Example of jagged shadows’ edges as typical artifact that appears
when the shadow map resolution is too low.

1.7 Z-fighting
Z-fighting (or stitching) is a 3D rendering effect that happens where
two or more primitives have close values in the z-buffer. This causes
annoying flickering issue since one primitive can be displayed in
front or behind the other inconsistently. Several techniques can mit-
igate the problem as increasing depth buffer resolution or changing
slightly the position of the objects. Since it is usual in game engines
to deal with very complex scene with many objects, it is quite com-
mon to experience this kind of artifact. All 10 images were render in
Unity or CryEngine and come from [Piórkowski et al. 2017]. Figure
7 shows an example of z-fighting artifact.

Full sized image Distorted sample Reference sample

Fig. 7. Example of Z-fighting artifact caused by small precision of the depth
buffer.

1.8 Compression
Compression dataset consists of 71 images and contains distortions
due to experimental low-complexity image compression, operating
at several bit-rates. Compression artifacts are the most common
ones in computer graphics. Too low quality settings of compression
result in very well known blockiness or mosaic artifact (Figure 8)
which has a great impact on overall image quality. The distortion
appear globally on the whole image and its visibility depends on the
local image content. Usually it is well seen on gradients and can be
easily masked by some specific frequencies. This set is an important
source of near-threshold distortions.

Full sized image Distorted sample Reference sample

Fig. 8. Example of blockiness effect - compression artifact.
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1.9 Deghosting
High dynamic range (HDR) images become very popular in the
recent years. Merging multiple exposures is a common method for
generating HDR images. During acquisition, in the presence of a dy-
namic scene, non static objects can cause ghosting artifacts. Usually
deghosting algorithms replace detected motion pixels either with
pixels from only one exposure, or from multiple exposures. The
main drawback of these methods is the reduction of high dynamic
range of the moving object and local color or brightness deviation
(Figure 9). Some other common artifacts that could be introduced
by deghosting process are motion artifacts, and noise. This set of
artifacts consists of either supra-threshold and near-threshold dis-
tortions. Images come from [Karađuzović-Hadžiabdić et al. 2017].

Full sized image Distorted sample Reference sample

Fig. 9. Example shows local color and brightness deviations.

1.10 IBR
This set contains typical optical flow warping artifacts (Figure 10)
and small shifts caused by nearest neighbor warping methods. Op-
tical flow warping results usually in deformation of the objects,
slight ghosting and discontinuities. The images created with NN
method do not contain any artifacts, but they are slightly shifted
according to the reference image. This effect is almost unnotice-
able for a human, even when he compares testing image with the
reference one. This kind of distortions were prepared to make our
metric invulnerable to slightly misaligned images. The images come
from dense light-field camera acquisition, followed by a process of
images reduction and subsequently a reconstruction process with
an optical flow or a nearest neighbor (NN) policy. NN images have
only one distortion level and optical flow ones have three of them.
All the images originate from [Adhikarla et al. 2017].

Full sized image Distorted sample Reference sample

Fig. 10. Double edges and discontinuities caused by optical flow warping
method.

1.11 CGIBR
This set consists of 5 rendered images and one photography that
contain optical flow and linear warping artifacts (ghosting and dis-
continuity presented in Figure 11). Ghosting artifact results in the
image as the objects with double edges and semi-transparent areas
between those edges. Ghosting is a common artifact of HDR brack-
eting, but appears also in warping methods, especially in linear
interpolation. In this case objects closer to the camera have stronger
ghosting effect than objects in background. Each image has only
one distortion level. All images of this set come from [Adhikarla
et al. 2017].

Full sized image Distorted sample Reference sample

Fig. 11. Example of ghosting as typical artifact of linear warping.

1.12 TID2013
In addition to 296 newly marked images, we added 261 images from
the TID2013 image quality dataset [Ponomarenko et al. 2015], for
which we could automatically generate marking. We selected from
that dataset a subset of images that did not contain noticeable differ-
ences and assigned them marking maps set to 0s (no user markings).
Then we selected another subset with well-noticeable distortions
and set corresponding marking maps to 1s (distortions visible in
the entire image). To ensure that both subsets were correctly se-
lected, we compared the four least severe distortion levels with
the reference images in an additional pairwise comparison experi-
ment (comparisons missing in the original dataset) and scaled the
original (per-observer) pairwise data together with additional mea-
surements using methods described in [Perez-Ortiz and Mantiuk
2017] and assuming Thurstone Case V observer model. Then, we
selected for the first subset the images with the score of less than
0.2 just-objectionable-difference (JOD) to the reference, and for the
second subset the images with the difference larger than 3 JODs.
We also excluded the distortion types that affected only small image
regions, such as JPEG transmission errors, and left the distortions
that affected all pixels.
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Fig. 12. Mixed subset.
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Fig. 13. Perception patterns subset.
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Fig. 14. Aliasing subset.

Fig. 15. Shadow acne subset.

Fig. 16. Peter panning subset.
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Fig. 17. Shadow map downsampling subset.

Fig. 18. Z-fighting subset.
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Fig. 19. Compression subset (continued on the next page).
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Fig. 19. Compression subset. (cont.)

Fig. 20. Deghosting subset.
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Fig. 21. IBR subset.

Fig. 22. CGIBR subset.
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Fig. 23. Images used for compression application

2 APPLICATION SUPPLEMENT
In this section we present the materials used for our application and
additional results for our applications that were not included to the
paper.

2.1 Visually lossless compression
For application purpose, we used Rawzor’s free dataset 1 which
contains a rich kind of image contexts. The images are cropped to
960×600 to fit into our screen. Then we run JPEG standard compres-
sion experiment on this dataset with different compression qualities.
We use the standard JPEG library for running JPEG compression on
images. The cropped images from Rawzor’s dataset are shown in
Figure 23.
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Fig. 24. Visually lossless compression results

In Figure 24 we present results of our visually lossless compres-
sion with images’ names in x axis labels.

2.2 Content-adaptive watermark
In Figure 25 we present more results of our watermarking applica-
tion.

3 TRAINED METRICS COEFFICIENTS
The appendix contains tables with the trained parameters for each
metric. Values were rounded to the fifth decimal place.

3.1 T-ABS

Fold 1 2 3 4 5
thr 0.0321 0.02942 0.02417 0.03639 0.04059
beta 1.2217 1.08502 1.12467 1.06505 1.02051

1(http : //imaдecompression .inf o/test imaдes/)
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Fig. 25. Results of watermarking application. Left column presents reference image, center column - watermarked image, right column - watermark amplified
for the presentation purpose
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3.2 T-CIEDE2000

Fold 1 2 3 4 5
thr 6.55466 6.25582 5.13933 7.22037 8.29298
beta 1.27386 1.23024 1.38956 1.15686 1.13099

3.3 T-sCIELab

Fold 1 2 3 4 5
thr 2.98988 2.87221 2.55975 3.01634 3.57053
beta 1.44352 1.61917 1.60862 1.49786 1.27204

3.4 T-SSIM

Fold 1 2 3 4 5
thr 0.41701 0.36027 0.33016 0.44991 0.36851
beta 3.79632 3.87352 2.47467 3.22844 3.60306
k1 0.13532 0.10600 0.18738 0.13919 0.17895
k2 0.76799 0.99830 0.99365 0.61453 0.99557

3.5 T-FSIM

Fold 1 2 3 4 5
thr 0.01233 0.01401 0.02391 0.02896 0.02893
beta 1.11681 1.19778 0.96535 0.95018 0.87426
k1 1.54232 0.11217 1.79319 0.53842 1.45343
k2 465.272 507.059 139.883 155.229 139.053

3.6 T-VSI

Fold 1 2 3 4 5
thr 0.00640 0.01523 0.00811 0.00998 0.01313
beta 1.13423 1.10442 0.80044 0.99466 0.98652
k1 11.4743 5.76465 15.5094 262.608 2.75587
k2 212.161 38.7918 412.850 411.786 296.098
k2 249.399 49.2923 204.810 126.973 85.4913

3.7 T-Butteraugli

Fold 1 2 3 4 5
thr 4.57724 4.39537 5.13794 5.27943 4.97349
beta 2.17965 2.15649 1.88865 1.95179 1.99546

3.8 T-HDR-VDP

Fold 1 2 3 4 5
peak_sensitivity 3.14234 3.12003 3.03552 3.08941 3.07797
mask_self 1.34086 1.10952 1.34726 1.38707 1.31143
mask_xn -3.59236 -1.67806 -1.93849 -1.27285 -1.56384
mask_p 0.47948 0.43410 0.57700 0.57052 0.53681
mask_q 0.10744 0.11764 0.26642 0.29759 0.18823
psych_func_slope 0.37482 0.35478 0.30360 0.36325 0.32973
si_sigma -0.49228 -0.45199 -0.49665 -0.49300 -0.48688
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